Decolorization of the azo dye Acid Orange 51 by laccase produced in solid culture of a newly isolated Trametes trogii strain

نویسندگان

  • Dalel Daâssi
  • Hela Zouari-Mechichi
  • Fakher Frikha
  • Maria Jesus Martinez
  • Moncef Nasri
  • Tahar Mechichi
چکیده

This study concerns the decolorization and detoxification of the azo dye Acid Orange 51 (AO51) by crude laccase from Trametes trogii produced in solid culture using sawdust as support media. A three-level Box-Behnken factorial design with four factors (enzyme concentration, 1-hydroxybenzotriazole (HBT) concentration, dye concentration and reaction time) combined with response surface methodology was applied to optimize AO51 decolorization. A mathematical model was developed showing the effect of each factor and their interactions on color removal. The model predicted that Acid Orange 51 decolorization above 87.87 ± 1.27 % could be obtained when enzyme concentration, HBT concentration, dye concentration and reaction time were set at 1 U/mL, 0.75 mM, 60 mg/L and 2 days, respectively. The experimental values were in good agreement with the predicted ones and the models were highly significant, the correlation coefficient (R2) being 0.9. Then the desirability function was employed to determine the optimal decolorization condition for each dye and minimize the process cost simultaneously. In addition, germination index assay showed that laccase-treated dye was detoxified; however in the presence of HBT, the phytotoxicity of the treated dye was increased. By using cheap agro-industrial wastes, such as sawdust, a potential laccase was obtained. The low cost of laccase production may further broaden its application in textile wastewater treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decolorization of Methyl Orange (As a Model Azo Dye) by the Newly Discovered Bacillus Sp

A bacterial strain (strain PS) was isolated from the textile effluents carrying Serilene Black BNFS® (C.I. Disp. Blk. Mix) disperse dye. The isolate was able to decolorize the dye without the need for any exogenous carbon source. Full sequencing of its 16S rRNA indicated that Bacillus sp strain PS is related to Bacillus cereus groups.  Silica- gel-thin layer chromatography of Ser...

متن کامل

Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase

A white-rot fungus, strain SQ01, was isolated from decayed wood in a temperate forest. The strain was identified as a member of genus Trametes, based on the morphological characteristics and a complete sequence analysis of its 18S rRNA gene and ITS region. Strain SQ01 was capable of decolorizing a variety of synthetic dyes, including azo, triphenylmethane, and anthraquinone dyes, with an optima...

متن کامل

Valorization and Biodecolorization of Dye Adsorbed on Lignocellulosics Using White Rot Fungi

Biosorption of dyes by lignocelluloses may be an effective method for removing dyes from textile effluents. However, the resulting dyeadsorbed lignocellulosic materials may constitute another pollution problem. An integrated method can solve this problem. Here, various lignocelluloses were tested for their Astrazon Black and Astrazon Blue dyes removal activities. The dye adsorbed after 30 min c...

متن کامل

Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation

A low-cost process for the production of laccases is necessary for a sustainable enzymatic wastewater treatment. Therefore, it is necessary to establish an easy and low-cost procedure for the production of laccase. In the present study the properties of crude laccase from Trametes versicolor produced by solidsubstrate fermentation is investigated. The application of the enzyme for dye decoloriz...

متن کامل

Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions.

Trametes villosa laccase was used for direct azo dye degradation, and the reaction products that accumulated after 72 h of incubation were analyzed. Liquid chromatography-mass spectrometry (LC-MS) analysis showed the formation of phenolic compounds during the dye oxidation process as well as a large amount of polymerized products that retain azo group integrity. The amino-phenol reactions were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013